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Immunotherapies have shown great promise in pleural mesothelioma (PM), yet 
most patients still do not achieve significant clinical response, highlighting the 

importance of improving the understanding of the tumor microenvironment (TME). Here, we utilized 
high-throughput, single-cell RNA sequencing (scRNA-seq) to de novo identify 54 expression pro-
grams and construct a comprehensive cellular catalog of the PM TME. We found four cancer-intrinsic  
programs associated with poor disease outcome and a novel fetal-like, endothelial cell population 
that likely responds to VEGF signaling and promotes angiogenesis. Across cellular compartments,  
we observe substantial difference in the TME associated with a cancer-intrinsic sarcomatoid sig-
nature, including enrichment in fetal-like endothelial cells, CXCL9+ macrophages, and cytotoxic,  
exhausted, and regulatory T cells, which we validated using imaging and bulk deconvolution analyses on 
independent cohorts. Finally, we show, both computationally and experimentally, that NKG2A:HLA-E 
interaction between NK and tumor cells represents an important new therapeutic axis in PM, especially 
for epithelioid cases.

Significance: This manuscript presents the first single-cell RNA sequencing atlas of PM tumor mi-
croenvironment. Findings of translational relevance, validated experimentally and using independent 
bulk cohorts, include identification of gene programs predictive of survival, a fetal-like endothelial cell 
population, and NKG2A blockade as a promising new immunotherapeutic intervention in PM.

1Department of Genetics and Genomic Sciences, Icahn School of Medicine 
at Mount Sinai, New York, New York. 2Lipschultz Precision Immunology 
Institute, Icahn School of Medicine at Mount Sinai, New York, New York. 
3Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, 
New York. 4Immunai, New York, New York. 5The Human Immune Monitor-
ing Center, Icahn School of Medicine at Mount Sinai, New York, New York. 
6Department of Pathology, Molecular and Cell-Based Medicine, Icahn 
School of Medicine at Mount Sinai, New York, New York. 7Department 
of Hematology and Medical Oncology, Icahn School of Medicine at Mount 
Sinai, New York, New York. 8Department of Thoracic Surgery, Icahn School 
of Medicine at Mount Sinai, New York, New York.

Introduction
Pleural mesothelioma (PM) is a cancer of the lung pleura 

that is strongly associated with exposure to asbestos (1),  
although the proportion of patients without known occu-
pational asbestos exposure is rising (2). Histologic subtypes 
can be characterized as epithelioid (60%–75% of cases), sar-
comatoid (10%), or biphasic PM (20%–30%), with the latter 
thought to represent a mixture of epithelioid and sarcomatoid  
subtypes (3). Due to the aggressive nature of all histologic 
types, existing therapeutic strategies have had limited success 
with a median overall survival of approximately 18 months 
(4, 5). Recently, the combination of anti-PD1 and anti-CTLA4 
checkpoint inhibitors has emerged as an effective combina-
tion therapeutic option for PM; despite similar response rates 

compared with chemotherapy, responses are more durable in 
this immunotherapy combination, resulting in a 27% decrease 
in the risk of death (6). Patients with sarcomatoid and biphasic 
(non-epithelioid) histologies have been historically associated 
with worst overall survival but are also marked by a higher lym-
phocyte infiltration (7) in the tumor microenvironment (TME) 
and show greater benefit from checkpoint blockade combina-
tion treatments relative to chemotherapy, which, in contrast, has 
greater efficacy in epithelioid tumors (6).

Although immunotherapy holds great promise, most pa-
tients with PM still do not achieve significant clinical benefit 
from these therapies, and many who do respond initially only 
receive a transient benefit. Given the variability in response 
encountered among patients and the toxicities associated 
with these therapies, new approaches are needed to determine 
which patients will benefit from existing immunotherapies 
and to discover new therapeutic strategies for nonresponders. 
It is likely that intra- and inter-tumoral heterogeneity in the 
TME and tumor-immune cell interactions all contribute to 
the variability in treatment response. Thus, a more complete 
characterization of the PM TME at baseline will reveal more 
optimal patient stratification strategies and new immuno-
modulatory pathways to target.

Large-scale bulk genomic and transcriptomic studies (8–11) 
have defined molecular subtypes associated with differences 
in the TME composition, including higher levels of T cells 
and M2-like macrophages in sarcomatoid and enhanced 
VISTA expression in epithelioid PM (8, 9). A subsequent meta- 
analysis study further reported on higher lymphocyte and 
monocyte infiltration, and increased stromal components 
and expression of immune checkpoint (IC) molecules in PM 
samples correlated with a sarcomatoid transcriptional pheno-
type (S score), whereas VISTA and NK cell markers trended 
in the opposite direction (12). Additional studies expanded 
on the PM tumor-subtype dichotomy to define novel subtypes 
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based on additional molecular features such as immune con-
tent, DNA methylation, and tumor ploidy (10, 11). Similarly, 
a recent mass cytometry study based on a 35-antibody panel 
also identified two histology-independent immunologic 
subtypes related to MHC-I and MHC-II neopeptide abun-
dance (13). Single-cell RNA sequencing (scRNA-seq) now en-
ables interrogation of the TME at unprecedented resolution 
and scale without a priori knowledge and reliance on a limited 
set of markers, which has greatly enhanced our understand-
ing of tumor heterogeneity across cancers (14). Here, we used 
high-throughput scRNA-seq and single-cell T-cell receptor se-
quencing (scTCR-seq) on treatment-naïve patient samples to 
build a comprehensive single-cell atlas of PM primary tumor 
and peripheral blood. Our integrative analysis allowed us to 
ask if there are cellular and molecular differences in the TME 
between PM histologic and molecular subtypes, if different 
subtypes associate with different cancer-intrinsic programs,  
if new cell-type-specific signatures are predictive of disease 
outcome, and if the scRNA-seq data can suggest more effec-
tive, personalized therapies.

Results
A Single-Cell Catalogue of Patient-Matched PM 
Tumors and Peripheral Blood

Our study group included 13 treatment-naïve patients 
diagnosed with PM spanning all three histologic subtypes 
(Supplementary Table S1) and comprised of four non-white 
and five female patients (31% and 38% of total cohort, respec-
tively), providing greater diversity compared with national 
incidence demographics (15). Primary tumor samples were 
obtained either during surgical resections (n = 7) or diagnos-
tic biopsies (n = 6) and profiled for scRNA-seq using the 10× 
Chromium platform, including scTCR-seq on seven samples 
(Fig. 1A). In parallel, peripheral blood mononuclear cells 
(PBMC) were similarly profiled for a subset of patients (n = 8). 
Following stringent quality control, a total of 141,219 cells 
were recovered (Supplementary Fig. S1A; “Methods”). We 
constructed an analytic pipeline (Fig. 1B) aimed at uncovering 
axes of molecular variation across cellular compartments and 
PM subtypes in our single-cell data (discovery cohort), which 
we validated experimentally and in silico using bulk RNA-seq 
and patient survival data from Bueno and colleagues (9) and 
Hmeljak and colleagues (ref. 8; 293 patients in total, hereafter 
named Bueno and Hmeljak cohorts, respectively). Unsuper-
vised dimensionality reduction, integration, and clustering of 
the tumor scRNA-seq data [Fig. 1C (left)] allowed for unbiased 
discovery of both established and previously unreported PM 
markers (Fig. 1D; Supplementary Table S2) for all major cell 
types detected in the tumor samples, including tumor cells 
(KRT19), normal mesothelial cells (HP), fibroblasts (COL1A1), 
smooth muscle cells (MYH11), endothelial cells (PECAM1), 
myeloid cells (LYZ), T cells (CD3D), NK cells (GNLY), B cells 
(CD79A), plasma cells (IGLC2), plasmacytoid dendritic cells 
(pDC, IRF8), a small number of alveolar type II cells (AT2; 
SFTPC), and a rare glial population (PMP2) recovered in only 
one of the patients. Similarly, we identified transcription fac-
tors (TFs) specifically expressed in each major cell type (Sup-
plementary Fig. S1B), which uncovered TFs with known roles 

in the corresponding cells; for example, TEAD1 in malignant 
cells, WT1 in mesothelium, and SNAI2 in fibroblasts (16–18).  
As samples were collected with two different procedures  
(biopsy or surgical resection), we examined the difference in cell 
proportions, which showed higher fractions of B, T, and NK 
cells in the resection samples and malignant cells in the biopsies 
(Supplementary Fig. S1C). To normalize for sample acquisition 
differences in cell composition, we performed downstream cell 
subset and expression program enrichment analyses relative 
to each cellular compartment and validated our main findings 
throughout the study with bulk deconvolution analysis.

Additionally, we performed cellular indexing of transcrip-
tomes and epitopes (CITE-seq) to construct a patient-matched 
single-cell atlas of the cellular protein and 5′ transcrip-
tomes of PM PBMCs [Fig. 1C (right)]. Thirty PBMC subsets 
shared across the eight patients were annotated using a ref-
erence-based pipeline (“Methods”), and de novo protein and 
RNA marker discovery identified canonical genes associated 
with these PBMC annotations, highlighting the quality of the 
data generated (Supplementary Fig. S1D–S1G; Supplemen-
tary Tables S3 and S4).

We next investigated cell-type abundance differences across 
PM molecular and histologic subtypes using a Bayesian decon-
volution framework powered by our PM-specific single-cell 
expression data (“Methods”). To robustly assess these data, 
we leveraged both the Bueno and Hmeljak cohorts. Results 
broadly agreed with previous bulk deconvolution cell-type 
estimations (11, 12), showing a more prominent infiltrate of  
T and B lymphocytes and myeloid immune populations as well 
as a more abundant stromal component in non-epithelioid sub-
types, whereas epithelioid tumors were comparatively en-
riched in malignant and NK cells (Fig. 1E; Supplementary 
Fig. S1H and S1I; refs. 10–12).

Inference of copy number alterations (CNA) enabled us to 
distinguish malignant cells from normal mesothelial cells 
in the tumor scRNA-seq data (Fig. 1F). We detected no ma-
lignant cells in biopsy sample P10 and therefore excluded 
it from all downstream analyses involving cancer cells. The 
CNA analysis detected large-scale deletions on chromosomes 
3 (p-arm), 13, 14, and 22 in most samples, in agreement with 
frequently deleted regions in PM detected by DNA sequenc-
ing (8, 19), which harbor PM commonly deleted genes such as 
BAP1, LATS2, and NF2 (Fig. 1F). Taken together, we have con-
structed the first comprehensive single-cell catalog of PM and 
observe clear differences in TME cell compositions between 
PM subtypes.

De Novo Discovery of PM Cancer Programs Show 
Link to Disease Outcome

We reasoned that analysis of scRNA-seq data from 30,318 
PM malignant cells can provide new, high-resolution insight 
on intra- and inter-tumoral heterogeneity. Toward this goal, we 
scored each malignant cell using gene signatures derived from 
four previously identified PM molecular subtypes (9): sarcoma-
toid, biphasic-S, biphasic-E, and epithelioid [Fig. 2A (left)]. As 
expected, we observed that in most sarcomatoid (e.g., P1, P13) 
and epithelioid (e.g., P8, P9) tumors, malignant cells predomi-
nantly reside in the corresponding subtype quadrants [Fig. 2A  
(right)]. However, several patients’ tumors histologically  
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classified as predominantly epithelioid (e.g., P2, P7) were com-
prised of malignant cells that spanned all four molecular sub-
types, uncovering a previously unappreciated intra-tumoral 
heterogeneity [Fig. 2A (right); Supplementary Fig. S2A]. Taken 
together, our data supports the view that PM tumors lie on a 
continuous spectrum between sarcomatoid and epithelioid 
subtypes (11, 12) and further provides evidence that this para-
digm is also valid at single-cell resolution.

The ability of our scRNA-seq analysis to separate malig-
nant cells from other TME cell types enabled us to dissect 
intra-tumoral heterogeneity and cancer-intrinsic expression 
programs at a much higher resolution and accuracy than was 
previously possible in bulk studies. We used consensus non-
negative matrix factorization (cNMF, “Methods”) to identify 
20 unique cancer modules (Cm1–Cm20) after careful anno-
tation of their biological pathways based on co-expression 
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patterns across cells and enrichment of top markers in canon-
ical cancer expression programs (Supplementary Fig. S2B–S2D; 
Supplementary Table S5). For example, we identified a cancer 
cell module (Cm17) that was predominantly expressed in sar-
comatoid histology tumors and was highly correlated with 
bulk RNA-seq-derived S score (Supplementary Fig. S2E) from 
ref. 12. Cm17 included known sarcomatoid-associated genes 
(e.g., VIM) as well as novel ones such as IGFBP6 and CAVIN3 
that have been implicated in the progression of breast and 
lung cancer, respectively (20, 21). To quantify the sarcoma-
toid content for each sample, we scored all malignant cells for 
Cm17 (referred to as single-cell sarcomatoid score or scS-score 
hereafter) and classified tumor samples as scS-high or scS-low 
based on their mean scS-score ranking (Fig. 2B). To investi-
gate the relationship between different cancer modules and 
scS-score, we correlated Cm scores across malignant samples  

and cells (Fig. 2C; Supplementary Fig. S2B). Cancer modules 
that most correlated with scS-score included hypoxia (Cm8; 
TGFBI, VEGFA), BMP2-driven targets (Cm11; HPGD, SYT1), 
epithelial-to-mesenchymal transition (EMT; Cm19; COL1A1, 
MMP2), cell migration (Cm9; BARX1, PODXL), cell prolifer-
ation (Cm16; PCNA, MKI67), and a mixed program expressing 
EMT, glycolysis, and hypoxia markers (Cm14; TGFB1, LOX; 
Supplementary Fig. S2C-D). In contrast, malignant programs 
that anticorrelated with the scS-score were enriched in epi-
thelioid (Cm2; MSLN, ITLN1), cell projection (Cm10; TEAD1, 
WWC1), and mesothelium markers (Cm15; HP, UPK3B). We 
also defined other interesting malignant programs related 
to immune pathways that did not show strong association 
with scS-score, including TNF-driven inflammation (Cm7; 
NFKBIA, ATF3), interferon response (Cm18; ISG20, IFIT1), 
and antigen-presenting programs (Cm20; HLA-DR, HLA-DQ).  
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Figure 2.  Unbiased discovery of PM cancer programs and association with patient survival. A, Left, two-dimensional (2D) representation (“Methods”)  
of the malignant cell distribution across the four PM molecular subtypes (quadrants) defined in Bueno and colleagues (9) combining cells from all 
patients with PM. Right, 2D representation of the malignant cell distribution for four representative patients with PM. Clinical histology of the  
cancers upon diagnosis are reported in parentheses. B, Per sample malignant cell distribution of the scS-score based on top 20 genes in Cm17, identi-
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E, Univariate Cox proportional hazard regression analysis (corrected for molecular subtype) for each Cm significantly associated with survival from the 
Bueno cohort. F, Common PM CNA (right) interaction with cancer programs (bottom) as computed by the median of per-sample Spearman correlation 
coefficients between each Cm and CNA score (“Methods”). Left bar shows median of per-sample Spearman correlation coefficients to the scS-score. 
G, Distribution of samples from the Bueno cohort scored by the scS-score and grouped by FISH staining of chr22 reported as deleted or normal in the 
Bueno cohort. P value was computed using Welch’s two-sample t test. **, P < 0.01.
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Comparing each module’s expression in sarcomatoid versus 
epithelioid samples in bulk cohorts showed mostly consis-
tent trends, validating our approach (Fig. 2D; Supplementary 
Fig. S2F). Furthermore, this highlights how our discovery 
scRNA-seq cohort can be leveraged to uncover novel cancer 
programs and confirm their association with PM subtypes us-
ing large bulk cohorts.

To assess if the de novo-discovered cancer programs were 
associated with different disease outcomes, we performed 
survival analysis using both the Cox proportional hazards 
regression analysis (adjusted for molecular subtype or histol-
ogy) and the Kaplan–Meier model within each histology. We 
found that sarcomatoid Cm17, cell proliferation Cm16, cell 
migration Cm9, and mixed program Cm14 were predictive 
of poor outcome in both validation cohorts (Fig. 2E; Sup-
plementary Fig. S2G and S2H). When stratified by molecular 
subtype, we also found PTEN-signaling Cm5 and chromatin 
organization Cm12 to be prognostic of lower overall survival 
only in epithelioid and sarcomatoid Bueno cohort patients, 
respectively (Supplementary Fig. S2I).

Lastly, we performed a new computational analysis that 
systematically uncovers genomic interactions between Cms 
and expression of genes in frequently deleted PM CNA do-
mains (Fig. 2F; “Methods”). For instance, chromosome 22 
(chr22) was anticorrelated with expression of several epitheli-
oid Cms (e.g., Cm2) and positively correlated with scS-score. 
Interestingly, we observe a similar trend in the Bueno cohort 
transcriptionally (Supplementary Fig. S2J) and at the DNA 
level, as quantified by FISH (Fig. 2G), suggesting that chr22 
deletions may occur preferentially in low scS-score, epithelioid- 
like PM tumors.

In summary, single-cell dissection of malignant cell heteroge-
neity uncovered genomic alterations and cancer-intrinsic gene 
expression programs in PM associated with different molecular 
subtypes, including a sarcomatoid, cell proliferation, cell migra-
tion, and mixed programs associated with poor outcome.

Fetal-Like, scS-Score-Associated Endothelial Cells 
Likely Contribute to Angiogenesis

The scRNA-seq data also presented the opportunity to char-
acterize the stromal cell subsets and interactions across our 
cohort, which has been largely understudied in PM compared 
with the malignant and immune cell compartments. Based 
on Louvain clustering and expression of canonical mark-
ers, we identified six mesenchymal and endothelial cell (EC) 
subsets: artery, PLVAP+ EC, vein, lymphatic EC (LEC), cancer- 
associated fibroblasts (CAF), and smooth muscle cells (Fig. 3A 
and B; Supplementary Fig. S3A). Using cNMF, we identi-
fied six EC gene modules (Ems), where only Em3 PLVAP+ EC 
module was positively correlated with the cancer-intrinsic  
scS-score (Supplementary Fig. S3B and S3C). cNMF also 
uncovered six CAF modules (Fms): COL6A2highPNISRhigh  
(Fm1), IGFBP6highMFAP5high (Fm2), CDH2highFABP5high (Fm3), 
COL16A1highCOL8A1high (Fm4), TXNIPhighSERPING1high (Fm5), 
and IGFBP2high (Fm6; Supplementary Fig. S3D and S3E). Com-
parison with mesenchymal cells from normal lung scRNA-seq 
data (22) revealed that Fm1–2 were correlated with adventitial 
fibroblasts, Fm4 with alveolar fibroblast, Fm3 with pericytes, 
and Fm5–6 with lipofibroblast transcriptomes (Supplementary 
Fig. S3F).

Integration with normal lung EC scRNA-seq data (22) 
similarly confirmed high correspondence between normal 
and PM EC subsets, except for the PLVAP+ EC population 
(Fig. 3C). To examine the functional role of this EC sub-
set, we performed gene set enrichment analysis and found 
high enrichment of genes associated with blood vessel mor-
phogenesis and development (Fig. 3D). This suggested that 
PLVAP+ ECs may be more prominent in development and 
prompted us to compare this population to a recently pub-
lished fetal lung single-cell atlas (23); indeed, top markers 
expressed in PLVAP+ ECs were also highly expressed in distal 
fetal lung endothelial populations (Fig. 3E) relative to EC 
subset from adult lungs (22). PLVAP was recently reported 
as a marker for fetal-like ECs in hepatocellular carcinoma, 
but other marker genes (e.g., COL4A1/2, RGCC, HSPG2, 
COL15A1) were unique to this population arguing that this 
is a PM-specific, fetal-like EC subset (24).

Next, we employed single-cell regulatory network and 
clustering (SCENIC, “Methods”) to decipher the key TF 
and downstream gene regulatory modules (regulons) for 
each EC subset (Supplementary Fig. S3G). This analysis 
revealed ETS1 and MEF2C to be among the top TF regula-
tors of PLVAP+ EC population, including 318 and 63 genes 
in their regulons, respectively. Both de novo-identified 
ETS1 and MEF2C regulons were most highly expressed in 
the PLVAP+ EC and fetal EC subpopulations (Fig. 3F; Sup-
plementary Table S6). In agreement, ETS1 and MEF2C are 
known to be required for endothelial patterning in embry-
onic angiogenesis (25, 26) and are also known to regulate 
angiogenesis (27).

To examine which TME signaling pathways are most 
likely to regulate the gene expression of PLVAP+ ECs, we 
employed NicheNet (“Methods”) and found that VEGFA 
was the top predicted ligand, expressed predominantly in 
myeloid and tumor cells (Fig. 3G). Not surprisingly, PLVAP+ 
ECs also showed the highest expression of VEGFA recep-
tors KDR and FLT4 (Supplementary Fig. S3H). It is worth 
noting that in the Hmeljak cohort, the combined expres-
sion of highly specific markers for PLVAP+ EC subset was 
significantly correlated with poor survival (Supplementary  
Fig. S3I). Furthermore, PLVAP+ EC expression was enriched 
in scS-high, non-epithelioid PM in bulk RNA cohorts after 
correcting for endothelial content (Fig. 3H; Supplementary 
Fig. S3J).

To experimentally validate the presence of PLVAP+ ECs in 
PM and enrichment in non-epithelioid tumors, we performed 
dual immunohistochemistry staining for PLVAP and CD31 
on tissue sections derived from patients with PM encompass-
ing all three histologic subtypes, along with uninvolved nor-
mal distal lung tissue (control) obtained from patients with 
lung adenocarcinoma. The quantified percentages of endo-
thelial cells exhibiting concurrent expression of CD31 and 
PLVAP within blood vessels were significantly increased in PM 
compared with control tissue, with the largest differences ob-
served in non-epithelioid PM (Fig. 3I and J). Taken together, 
we discovered a PM-specific, fetal-like, angiogenic PLVAP+ 
EC subset that is likely regulated by TFs ETS1, MEF2C, and 
VEGFA signaling; this population specifically expresses VEGFA 
receptors KDR and FLT4 and is enriched in non-epithelioid  
PM tumors, which likely favors tumor survival and contributes 
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Figure 3.  Fetal-like, cancer-enriched PLVAP+ endothelial cells associate with angiogenesis. A, UMAP embeddings of PM stromal and endothelial cell types 
integrated across patients. B, Dot plot showing expression and percentage of cells expressing top selected markers per cell-type annotation with relative 
sample composition for each cell type (right, stacked bar plots). C, Spearman correlation coefficients (ρ) heatmap clustering the average expression profiles 
of endothelial cell subsets found in normal adult distal lung and PM samples. D, Gene set enrichment analysis of PLVAP+ EC markers compared against the 
Gene Ontology biological processes (GO BP) database. Top five enriched categories are displayed. E, Distribution of PLVAP+ EC marker score in fetal and adult 
distal lung endothelial cell subsets, ordered from highest to lowest median score. F, Distributions of the MEF2C (left) and ETS1 (right) regulon activity in fetal, 
adult distal lung, and PM endothelial cell subsets. G, NicheNet prediction of ligand prioritization (top 10 displayed), their abundance in sender cell types 
(left dot plot), and their cognate targets among PLVAP+ EC markers (right heatmap). H, Sample distributions of PLVAP expression in the Bueno cohort grouped 
by molecular subtype after correcting for endothelial content. P values were computed comparing sarcomatoid and epithelioid subtypes using Welch’s 
two-sample t test. ***, P < 0.001. I, Quantification of IHC staining of PLVAP+ CD31+ endothelial cells in PM tumor tissue sections of sarcomatoid (n = 2), 
biphasic (n = 2), and epithelioid histology (n = 2) compared with normal adjacent distal lungs (n = 4). Between 9 and 23 ROI were quantified for each sample. 
P values were computed comparing each PM subtype to the normal tissue using Welch’s two-sample t test. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.  
J, Representative micrographs from tissue sections from patients with sarcomatoid, biphasic, and epithelioid PM histologies and uninvolved normal distal 
lung tissue section stained with anti-PLVAP (purple), CD31(brown), and hematoxylin (blue). Cap., capillary; Vas., vascular; Endo., endothelial.
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to a worse disease outcome. These findings thus support fur-
ther investigation of anti-VEGFA agents (5) in PM tumors 
with high PLVAP+ EC abundance.

Macrophages in scS-High PM Express CXCL9/10/11 
and Likely Contribute to T-cell Infiltration

To characterize the diversity of myeloid cells in PM, we 
performed unsupervised clustering followed by integration 
and annotation of cell subtypes based on canonical markers. 
We identified eight different myeloid subsets: dendritic cells, 
further separated into cDC1, cDC2, and mregDCs, plasmacy-
toid dendritic cells (pDC), classical (CD14+) and nonclassical 
(CD16+) monocytes, mast cells, and a large and heterogeneous 
cluster of tumor-associated macrophages (TAMs; Fig. 4A  
and B; Supplementary Fig. S4A–S4C). We observed that VISTA, 
an IC gene shown to be preferentially expressed in epitheli-
oid subtypes (8, 28), was most highly expressed by monocytes 
among myeloid subsets and all other cell types and showed 
elevated expression in scS-low vs scS-high tumor monocytes 
(Fig. 4C). VISTA has been targeted in clinical trials for PM, and 
quantifying its expression at a single-cell resolution can elu-
cidate the cellular context of its potential therapeutic mecha-
nisms and how these differ across histologic subtypes.

When applying cNMF to dissect TAM heterogeneity, we de-
tected 10 macrophage modules (Mms), including an inter-
stitial macrophage-like state (Mm1; SELENOP, LYVE1), an 
inflammatory CXCL9high TAM state (Mm6; C1QC, STAT1), and 
lipid-associated TREM2high TAM state (Mm7 and Mm9; SPP1, 
TREM2; Fig. 4D; Supplementary Fig. S4D and S4E). We find 
that Mm1 and Mm6 were most correlated with the scS-score 
(Fig. 4D). In agreement, CXCL9/10/11 expression was higher 
in scS-high versus scS-low myeloid cells (Fig. 4E and F). These 
chemokines are known to bind receptor CXCR3, recruit T cells 
to the tumor core, and correlate in expression with lymphocyte 
abundance in melanoma and lung cancer (29, 30). In our co-
hort, CXCL9/10/11 were most highly expressed in monocytes 
and TAMs, whereas their corresponding receptor CXCR3 was 
specifically expressed in NK and T cells, especially in CD8 and 
regulatory T (Treg) cells (Fig. 4F). Increased recruitment of 
T cells in scS-high PM tumors via these interactions is further 
supported by significant correlations between CXCL9/10/11 ex-
pression and T-cell abundance in the Bueno cohort (Fig. 4G).

To further investigate the regulation underlying different 
myeloid and TAM subsets, we performed regulon analysis 
using SCENIC (Fig. 4H; Supplementary Fig. S4F). This de novo 
analysis captures the known role of IRF8 in cDC1 survival and 
pDC function (Supplementary Fig. S4F; ref. 31). Additionally, 
TFs MAF, ATF3, and JUN were enriched for regulon activity 
with scS-high associated Mm1 TAM state, whereas known 
IFNγ signaling TFs STAT1 and IRF1 (32) were predicted as 
regulators of Mm6 and CXCL9/10/11 expression (Fig. 4H).

In summary, we observe differences in myeloid expres-
sion associated with different PM subtypes–scS-low tumors 
exhibit higher VISTA expression in monocytes and scS-high 
tumors show increased TAM production of CXCL9/10/11 
chemokines, which are implicated in chemotaxis of T cells 
and likely regulated by TFs STAT1 and IRF1. These findings 
can inform on future immunomodulatory therapies target-
ing myeloid cells in PM.

Molecular Dissection of T-cell Programs and IC 
Molecules Show Association with scS-Score

To comprehensively characterize the T and NK cellular di-
versity in PM de novo, we again utilized two complementary 
unsupervised clustering approaches: Louvain clustering and 
cNMF. Louvain clustering identified major cell subsets in the 
tumor samples including CD4, CD8, NK-like T cells, Treg,  
T follicular helper (TFH) cells, and two NK cell subsets marked  
by high expression of KLRC1 and FGFBP2 (Fig. 5A and B; Sup-
plementary Fig. S5A). Using cNMF, we additionally un-
covered functional T-cell expression modules (Tm), such 
as naïve (Tm1), stress response (Tm8), interferon response 
(Tm12), inflammatory (Tm3), and gamma delta modules  
(Tm9; Fig. 5C; Supplementary Fig. S5B and S5C). We found 
six T-cell modules highly correlated with scS-score (Fig. 5C 
and D), including proliferative (Tm10) and Treg programs 
(Tm7; FOXP3 and IL2RA), and four other modules linked to 
CD8 cell states: progenitor (Tm11; XCL1, GNG4), exhaus-
tion (Tm5; HAVCR2, LAG3), effector (Tm2; NKG7, GZMA), 
and MHC II genes expressing module (Tm4) linked to CD8 
T-cell activation (33). CD8 T-cell effector, exhaustion, and 
Treg modules showed increased expression in T cells from 
scS-high tumors and were significantly enriched in bulk de-
convolution analysis comparing sarcomatoid versus epithe-
lioid tumors after correcting for T-cell content (“Methods”), 
arguing that higher immune infiltration in scS-high tumors 
is accompanied by a shift toward CD8 and Treg fractions 
(Fig. 5E; Supplementary Fig. S5D). Increased exhaustion in 
scS-high T cells was also supported by higher expression of 
HAVCR2 and LAG3 as well as known IC targets PDCD1, TIGIT, 
and CTLA4 (Fig. 5F), as previously reported in bulk RNA-
seq studies (11, 12). Among T-cell subsets, CTLA4 and TIGIT 
showed highest expression in Tregs, whereas PDCD1 was most 
highly expressed in CD8 and TFH cells in scS-high and scS-low 
tumors, respectively (Fig. 5G; Supplementary Fig. S5E).

We observed an expression of germinal center (GC) TFH 
cell (34) markers (e.g., TOX2, CXCR5) in a sample P9-enriched 
module Tm6 (Fig. 5H), prompting us to examine the B-cell 
compartment where we also identified a population of highly 
proliferative GC B cells found almost exclusively in P9 (Fig. 5I 
and J). Notably, enrichment of both GC TFH and B cells sug-
gests the presence of mature tertiary lymphoid structures 
(TLS) in this patient with epithelioid PM. To investigate a link 
between TLS presence and molecular subtypes, we correlated 
the expression of GC TFH marker TOX2 with the top markers 
of GC B cells (Fig. 5J) and found a significant association only 
in epithelioid samples (Fig. 5K; ρ = 0.21, P value = 0.0004). 
Interestingly, a previous study showed histologic evidence of 
TLS presence in a subset of epithelioid PM tumors associated 
with longer survival (35).

Next, we examined the CITE-seq and scTCR-seq data for all 
PBMC lymphocytes, which showed consistent RNA and protein 
expression (Fig. 5L and M; Supplementary Fig. S5F) and detec-
tion of more than 3,000 expanded clonotypes in CD8 T cells 
(Supplementary Fig. S5G). Expanded TCR clonotypes may be 
indicative of reactive CD8 T cells recognizing tumor antigens or 
bystander CD8 memory T cells, but only the former may lead 
to terminal exhaustion (36). Hence, we scored CD8 T cells with 
detectable TCR sequence by the exhaustion module previously 
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identified in tumor-infiltrating lymphocytes (Tm5) and found 
that expanded CD8 clonotypes have significantly higher 
exhaustion score compared with non-expanded clonotypes  
(Fig. 5N). We also show significant increases for activation 
(Tm4) and cytotoxicity (Tm2) of CD8 module scores (Supple-
mentary Fig. S5H). These trends were also observed in tumor- 
infiltrated T cells, albeit not significant perhaps due to smaller 
sample size, where expanded clonotypes were also mapped pri-
marily to CD8 T cells and made up a higher fraction of CD8  
T cells in scS-high tumors (Supplementary Fig. S5I–S5K).  
Finally, we identified several expanded clonotypes present in 
both tumor and blood patient-matched samples that exhibit 
high exhaustion scores, further suggesting systemic antitumoral 
T-cell activity (Fig. 5O; Supplementary Fig. S5L and S5M).

Taken together, molecular characterization of B and T cells 
revealed a higher Treg abundance, IC target expression, and 
CD8 exhaustion, cytotoxicity, and activation modules associ-
ated with the scS-score; in contrast, germinal center TFH and 
B-cell markers suggest preferential TLS formation in epithe-
lioid PM tumors.

NK Cell IC Blockade Targeting NKG2A as a Novel 
Therapeutic Strategy in PM

In the past decade, immunomodulatory drugs have become 
a mainstay for the treatment of cancer, including anti-PD1 
and anti-CTLA4 combination therapy recently approved for 
use in PM (6). NK cells have been largely unexplored in PM 
but also represent a viable therapeutic target (37). We found a 
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significant survival benefit of higher NK cell infiltration in tu-
mors from patients with epithelioid PM (Fig. 6A; Supplemen-
tary Fig. S6A) and observe a similar trend when using a Cox 
proportional hazard regression model across all subtypes in 
both validation cohorts (Supplementary Fig. S6B and S6C). 
Combined with our previous observation of higher NK cell 
infiltration in epithelioid PM (Fig. 1E), this analysis indicates 
that NK cell abundance may represent an important, epithe-
lioid-specific prognostic biomarker. To dissect the crosstalk 
between NK and malignant cells and identify new therapeu-
tic avenues, we curated a list of NK cell inhibitory receptors 
and cognate ligands and found that KLRC1 and its ligand 
HLA-E were both highly expressed by NK and malignant cells, 
respectively, in comparison to other ligand receptor pairs in 
our scRNA-seq data (Fig. 6B). KLRC1-expressing NK cells were 
also most abundant in PM compared with other cancer types 
(Fig. 6C) after integrating our scRNA-seq data with a pan- 
cancer immune cell atlas (38), and median expression of KLRC1 
and HLA-E in PM was the fifth highest among 33 cancer types 
surveyed in The Cancer Genome Atlas (TCGA; Supplemen-
tary Fig. S6D).

Antibodies (e.g. monalizumab) targeting NKG2A (encoded 
by KLRC1 gene) have been shown to enhance both NK and CD8  
T-cell response (37). To experimentally test if blocking NKG2A/ 
HLA-E interaction could augment NK cell antitumor func-
tion in PM, we cocultured four mesothelioma cell lines with 
blood-derived NK cells in the presence or absence of anti- 
NKG2A antibody (Fig. 6D; Supplementary Fig. S6E). Flow 
cytometry analysis showed that the mesothelioma cell lines 
constitutively express HLA-E, which increased following IFNγ 
treatment (Supplementary Fig. S6F), whereas the NK cells ex-
pressed high levels of NKG2A (Supplementary Fig. S6G). Next, 
NK cells were cocultured with the mesothelioma cell lines for  
16 hours in the presence or absence of anti-NKG2A antibody, 
and, as readouts for NK cell activation, IFNγ production and 
degranulation (CD107a+, granzyme A−/low) were measured 
thereafter by flow cytometry. We found that NKG2A blockade 
significantly increased NK degranulation and IFNγ production, 
regardless of whether the tumor cell lines were pre-stimulated 
with IFNγ to increase HLA-E expression (Fig. 6E). These differ-
ences remained significant after applying a Boolean operator 
for gating on total activated NK cells undergoing degranula-
tion or producing IFNγ (Supplementary Fig. S6H). We tested 
this interaction also in the presence of anti-MHC class I  
(MHCI) antibody because the expression of MHCI on tumor 
cells is known to suppress NK cell activation. This additional 
step confirmed that enhanced NK cell activation was indeed 
primarily due to the targeted blockade of the NKG2A:HLA-E 
interaction (Fig. 6E; Supplementary Fig. S6H).

In conclusion, our analysis demonstrates that NK cell in-
filtration is a prognostically relevant biomarker in epithelioid 
PM subtypes and that targeting NKG2A significantly aug-
ments NK cell tumor cytotoxicity, warranting further investi-
gations as a viable immunotherapy strategy in PM.

Discussion
We performed scRNA-seq profiling of ∼140,000 human 

tumor and peripheral blood cells and identified 54 gene ex-
pression modules across cellular compartments to generate  

the first single-cell sequencing atlas of PM. Analysis of malig-
nant cell heterogeneity showed the presence of all four molec-
ular subtypes in biphasic and most epithelioid PM tumors, 
supporting the notion that PM tumors do not classify into 
discrete molecular subtypes but rather lie on a continuum 
between sarcomatoid and epithelioid histology (11, 12). Con-
sequently, we adopted a rank-based analytical strategy de-
signed to capture enrichments of different cellular programs 
across patients that uncovered a highly distinct TME asso-
ciated with a cancer-intrinsic sarcomatoid signature, which 
we termed scS-score (Fig. 6F). We also uncovered new cell 
migration, proliferation, and mixed hypoxia/EMT cancer 
modules that were associated with high scS-score across 
patients and predictive of poor outcome. In contrast, cancer 
modules containing epithelioid markers were associated with 
chromosome 22 deletion in our scRNA-seq data, which was 
supported by RNA expression and DNA FISH data from the 
Bueno cohort.

Our de novo analysis led to the discovery of a fetal-like, 
PLVAP+ EC population, which we predict responds to VEGFA 
signaling via receptors KDR and FLT4 and promotes angio-
genesis. This population was enriched in PM tumors when 
compared with ECs from adult lungs and was also associ-
ated high scS-score (scS-high) samples, which we validated 
by IHC. Bevacizumab, a monoclonal antibody targeting 
VEGFA, effective in the treatment of many cancers (39), has 
been introduced in first-line standard of care for patients 
with unresectable PM albeit with limited benefits (5). Efforts 
in identifying biomarkers of treatment response have focused 
on plasma levels of VEGFA and molecules eliciting similar 
angiogenic responses with inconclusive results (40, 41). It is 
tempting to speculate that this population of PLVAP+ ECs 
may represent a novel biomarker for antiangiogenic ther-
apy response and a putative future drug target to abrogate  
tumor-induced angiogenesis.

Examination of the immune composition of PM samples 
with high scS-score showed a higher proportion of Tregs and 
CD8 effector and exhausted T cells, in line with past bulk 
RNA studies (10, 11), and further uncovered a population of 
CD8 MHCII+ T cells, which was previously reported to induce 
pro-inflammatory activity in patients responding to neoad-
juvant chemotherapy in breast cancer (33). We also provide 
molecular evidence for TFH cells positive for CXCL13 and  
IL21, which are relevant biomarkers of immunotherapy re-
sponse (42), and further describe a patient-specific TOX2+ 
TFH transcriptional program associated with the presence 
of highly proliferating germinal center B cells that could 
signify the presence of mature TLSs (43). Indeed, Tox2 has 
been shown to be essential for maintaining a TFH phenotype 
when transfected in GC TFH isolated from human tonsils  
ex vivo (34). Supporting our finding, TLSs have been previ-
ously observed in PM using bulk RNA and histologic analysis 
on a cohort of 123 chemo-naïve patients, which was linked to 
improved survival and enriched in epithelioid tumors (35). 
Finally, we identified a CXCL9/10/11-expressing TAM popula-
tion in PM that is associated with high scS-score samples and 
likely contributes to chemotaxis for T-cell trafficking to the 
tumor core. Consistent with this observation, CXCR3 (recep-
tor for CXCL9/10/11) was more expressed in scS-high tumor  
T cells, especially in CD8 T cells and Tregs that have higher  
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abundance in scS-high tumors. Further supporting this find-
ing is a recent study employing spatial transcriptomics in 
PM biphasic samples, which showed increased lymphocytic 
infiltration and expression of chemokines CXCL9/10 in  
sarcomatoid-enriched regions (44). Future time-course stud-
ies will be needed to decipher the precise molecular events 
that trigger these highly divergent TMEs that track with the 
sarcomatoid–epithelioid axis.

Resolving the complexity of the immune–stroma–tumor in-
terface and composition in the TME is of high clinical signif-
icance given that there are more than 4,700 immunotherapy 
agents in development (45), emphasizing the need for rational 
clinical trial design and patient treatment stratifications based 
on observations such as those reported here. Our data-driven 
approach highlighted an immunosuppressive NKG2A:HLA-E 
interaction between NK and tumor cells, which enhanced NK 

cell activity upon NKG2A blockade in cocultures with PM cell 
lines. A previous study similarly reported the reactivity of NK 
cells isolated from PBMC of healthy individuals against me-
sothelioma cell lines when stimulated with IL15 (46). Further 
supported by the findings that KLRC1 expression in NK cells is 
more abundant in PM relative to other cancer types and that 
NK cell content is an indicator of better overall survival in epi-
thelioid PM, these initial results lay the ground for further in-
vestigations in experimental models of PM using anti-NKG2A 
therapeutics (e.g., monalizumab).

In conclusion, this study demonstrates the potential of 
high-throughput cellular profiling via scRNA-seq and in-
depth analysis on PM clinical samples in identifying new cel-
lular programs, prognostic signatures of disease outcome, 
and therapeutic targets toward the goal of achieving more 
effective, personalized therapies in PM.
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Our study comes with several limitations. First, the small 
sample size of this rare cancer limited our ability to sample 
patients evenly across different molecular subtypes. Our 
analysis strived to overcome this limitation by corroborat-
ing our main findings using large bulk RNA-seq cohorts 
and performing associations between TME gene expression 
programs using rank statistics (Spearman correlation). 
However, this analytical approach, although robust to out-
liers, does not capture the absolute difference in amplitude 
of such molecular associations, and more sophisticated 
machine learning methods can be leveraged in the future 
with larger cohort sizes to model complex, nonlinear re-
lationships between multiple cell-type-specific programs 
and the TME. Second, differences in TME along the sarco-
matoid to epithelioid subtype gradient in our study were 
investigated using our de novo-identified scS-score, which 
is highly correlated with the sarcomatoid score from ref. 12 
(Supplementary Fig. S2E). Nevertheless, other tumor-intrinsic 
transcriptional modules may emerge in future studies that 
could prove to be more informative in modeling the TME 
crosstalk in PM and stratifying patients for treatment.  
Indeed, a recent study employing bulk multimodal molecular 
profiling reported axes of molecular divergence orthogo-
nal to the sarcomatoid score that impact patient survival 
and are driven by different levels of DNA methylation, ge-
nomic ploidy, and immune infiltration (10). Future efforts 
in characterizing the molecular aspects of PM should aim 
to leverage such multimodal technologies at single-cell res-
olution. Third, even though we were able to identify and 
validate the presence of a fetal-like, endothelial subpopu-
lation, the stromal component in our scRNA-seq cohort 
was overall underrepresented, accounting for only 5,538 
cells with several samples having very low numbers. This 
may have precluded us from uncovering additional stromal 
subpopulations of relevance for PM progression, especially 
among CAFs, that are known to be abundant in PM and 
contribute to its pathogenesis (47). Fourth, we capture 
3,214 NK cells in our data that form three distinct pop-
ulations; however, we anticipate that higher sampling of 
these cell types in PM and across cancer types will better 
inform on their functional diversity and therapeutic po-
tential (bioRxiv 2023.10.26.564050). Lastly, our single-cell 
catalogue does not capture neutrophils, which are known 
to often escape detection in human samples utilizing the 
10× Chromium scRNA-seq platform.

Methods
Human Tumor Sample Collection

Tumor samples were obtained from diagnostic biopsies and sur-
gical specimens of patients undergoing resection at Mount Sinai 
Hospital after obtaining written informed consent in accordance 
with a protocol reviewed and approved by the Institutional Review 
Board at the Icahn School of Medicine at Mount Sinai (IRB Human  
Subjects Electronic Research Applications 10-00472 and 10-00135), 
in collaboration with the Biorepository and Department of Pa-
thology and conducted in accordance with the US Common Rule. 
Clinical information of participants can be found in Supplemen-
tary Table S1. Only patients with treatment-naïve PM were included 
in this study.

Tumor Sample Processing
Tumor samples were transported in MACS Tissue Storage Solution 

stored at 4°C, rinsed with PBS, minced, and incubated in a rotation 
shaker for 40 minutes at 37°C in collagenase IV 0.25 mg/mL, collage-
nase D 200 U/mL, and DNAse I 0.1 mg/mL (all Sigma). Cell suspensions 
were then aspirated through a 18G needle 10 times and strained through 
a 70-micron mesh prior to RBC lysis. Dead cells were removed using a 
Dead Cell Removal Kit (Annexin V, Miltenyi Biotec). Cell suspensions 
were sorted into CD45+ and CD45− cells using the EasySep Human 
CD45 Depletion Kit (Stem cell techonologies) per kit instructions.

Tumor Single-Cell Library Construction and Sequencing
Single-cell RNA-seq (scRNA-seq) was performed at the Mount Sinai 

Genomics Core and Human Immune Monitoring Core on tumor sam-
ples using the Chromium platform (10× Genomics) with the 3′ gene ex-
pression (3′ GEX) V3 kit or 5′ V2 kit. Approximately 4,000 CD45+ and 
4,000 CD45− cells were loaded into each channel of the 10× Chromium 
controller, following the manufacturer-supplied protocol. For 5′ chem-
istry and the associated TCR V(D)J sequencing, 8,000 cells were target-
ed for recovery on each channel of the 10× Chromium X. 10× libraries 
were constructed using the 10× supplied protocol and sequenced at the 
Mount Sinai Genomics Core Facility. Gel bead in emulsions (GEM) were 
generated on the sample chip in the Chromium controller. Barcoded 
cDNA was extracted from the GEMs using Post GEM-RT Cleanup and 
amplified for 12 cycles. Amplified cDNA was fragmented and subjected 
to end-repair, poly-A-tailing, adaptor ligation, and 10×-specific sample 
indexing following the manufacturer’s protocol. For TCR V(D)J-seq,  
a portion of the cDNA was also used to create targeted enrichment 
of the V(D)J sequences of the TCRs, following the manufacturer’s in-
structions. Libraries were quantified using Bioanalyzer (Agilent) and 
QuBit (Thermo Fisher) analysis and then sequenced in single- or pair-
end mode on a HiSeq 2500 or NovaSeq instrument (Illumina).

PBMC Sample Processing and Sequencing
PBMC sample processing and sequencing were performed at Immu-

nai laboratories. PBMCs were isolated within 3 hours of collection via 
Ficoll density gradient centrifugation for 10 minutes at 1,200 g room 
temperature. The supernatant was then spun down at 500 g for  
10 minutes at 4°C, and the pellet was resuspended to a concentration 
of 10 × 106 cells/mL cold Human Serum AB (GemCell HAB and HAB +  
20% DMSO in 1:1 ratio). The resulting PBMCs were stored in 2-mL 
cryogenic vials in liquid nitrogen. For cell isolation, PBMCs were  
thawed, washed 2× in RPMI 2% FCS, treated with ACK lysis buffer 
(Lonza) to remove RBCs, and briefly incubated with DAPI. Approxi-
mately 300,000 cells were then sorted on a DAPI-negative gate. Cells 
were then stained for 30 minutes at room temperature with a panel of 
138 Total-Seq-C antibodies [BioLegend, Stoeckius and colleagues (48)] 
and washed 3× using the HT1000 laminar wash system (Curiox). Cells 
were then counted using the Cellaca MX High-throughput Automated 
Cell Counter as described in the manufacturer’s protocol (Nexcelom), 
pooled, and loaded on the 10× Chromium 5 V2 and Next GEM Chip 
K Kit using a superloading strategy mixing cells from the same sample 
across lanes. BCR and TCR CDR3 sequences were enriched using the 
human V(D)J B-/T-cell enrichment. Libraries were prepared according 
to the manufacturer’s protocol (10× Genomics) and sequenced on a  
NovaSeq 6000 System using the S4 2× 150 kit (Illumina). Raw reads  
were aligned to the human transcriptome using a splice-aware algo-
rithm to produce cell-by-gene count matrices. Cells were separated to 
their respective samples using Seurat v4.4 built-in dehashing functions.

scRNA-seq Data Preprocessing, Quality Control, Clustering, 
Annotation, and Differential Expression

Single- (samples P2 and P9-P13) and pair-end (samples P1, P3, and 
P4-P8) FASTQ files were mapped to the GRCh38 human transcrip-
tome using the count function in CellRanger > v3.1. Expression of 
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ambient RNA was mitigated using cellbender v0.3.0, and corrected 
count matrices were then normalized, log-transformed, and scaled 
using the Seurat v4.4 package in R. Cells with <400 genes, <1,000 
unique molecular identifier (UMI) counts, or >25% mitochondrial 
gene expression detected were removed from downstream analyses. 
Principal component analysis and k-nearest neighbor (kNN) graphs 
were computed using Seurat default parameters. Based on the kNN 
graphs, a shared nearest neighbor graph was constructed to cluster 
cells with the original Louvain algorithm as implemented in Seurat.  
High-level cellular compartment annotations were assigned to clusters 
based on expressions of known cell class markers. For cell-type an-
notation of PBMC data, we used a reference-based method (https://
azimuth.hubmapconsortium.org/). Doublet clusters were identified 
with higher-than-average gene and UMI counts, as well as expres-
sions of markers from multiple high-level cellular compartment (e.g., 
CD45+ and CALB2+), and manually removed from downstream anal-
yses. Data integration within each cell compartment was performed 
using harmony v.0.1 to minimize sample-derived batch effects in 
aggregated visualizations. For batch effect correction across all cell 
compartments, scANVI model with n_layers = 3 and n_latent = 32 
from scvi-tools v0.20.3 was used on raw counts to integrate the data 
across samples with default parameters when training. Differential 
expression analyses for de novo marker discovery were performed us-
ing Seurat FindMarkers function using a Wilcoxon rank sum test. 
Pathway and gene ontology analysis was carried out with cluster-
Profiler R package v4.6.0, using function enricher.

Defining Cell Programs Using cNMF
We applied nonnegative matrix factorization implemented in the 

Python package cNMF v1.3.4 to identify cellular states in each of the 
following cell types: malignant, endothelial, CAF, TAM, and T cells. 
For each, we tested from 5 to 30 K with 100 replicates and filtered 
outlier components with Euclidean distance >0.3 from their nearest 
neighbors. Then, based on the trade-off between reconstruction error 
and factorization stability and manual inspection of the modules, we 
selected the most appropriate Ks. We then computed cNMF module 
scores by taking the top 20 genes ranked by spectra scores for each 
cNMF module using Seurat function AddModuleScore. Prior to this, 
we removed gene redundancy in cNMF modules by assigning each 
gene to the cNMF module with the highest spectra score ensuring in-
dependence when computing module scores and pairwise correlation. 
To find associations between cNMF modules, we first computed the 
mean score for each cNMF module across cells of the relative compart-
ment and then run pairwise Spearman correlations between cNMF 
modules across samples. For the fibroblasts and EC compartments, we 
computed cNMF modules from metacells computed using R package  
hdWGCNA v0.2.18, as these showed better performance compared 
with cNMF modules when using individual cells. We also merged 
cNMF modules whenever their expression was highly correlated across 
cells (taking the top 20 genes for each to compute a combined score) 
and removed others deemed to represent doublets, resulting in a total 
number of 54 cNMF that can be found in Supplementary Table S5.

Copy-Number Variations Inference
We used the package InferCNV v1.14.2 to infer CNA in the epi-

thelial compartment of the scRNA-seq data. We used a set of normal 
distal lung cell types including normal mesothelial cells as reference 
(unpublished). We computed a CNA load score per cell by summing 
the absolute CNA scores per cell and then normalized the resulting val-
ues to the third quantile across cells per sample. A combination of the 
CNA load distribution and UMAP cell clustering of epithelial cells was 
used to identify true malignant cells. To infer genomic interaction with 
cancer cNMF modules, we applied the following strategy: (i) Metacells  
were computed using hdWGCNA function MetacellsByGroups (k = 50, 
max_shared = 30) excluding low cell number samples P1, P3 and P13. 

(ii) We selected the most frequent CNA chromosomal rearrangements 
in our data (at regions: chr1p, chr3p, chr4, chr13, chr14, chr22), and  
queried all the genes contained in each chromosomal region using 
biomaRt v2.54.0, which were then used to compute a module score for 
each region and metacell. (iii) Malignant cNMF modules were re-
computed on metacells, excluding all genes that overlapped selected 
genomic regions. (iv) The Spearman correlation was computed across 
metacells for each sample, and the median Spearman correlation coef-
ficient was used for display in the heatmap in Fig. 1F. Similarly, for vali-
dating this analysis in the Bueno cohort, we took the average expression 
of the genes in each malignant cNMF module, excluding genes within a 
CNA region, and computed the Spearman correlation with the aver-
age expression of genes in each CNA region across samples.

Bulk RNA-Seq Datasets Acquisition and Analysis
RSEM-normalized count matrix including 82 bulk RNA-seq sam-

ples as part of the TCGA MESO cohort (Hmeljak cohort) was down-
loaded using the R package cgdsr v1.3 of cBioPortal (http://www.
cbioportal.org), an online database built for cancer genomics along 
with metadata including histology information. The Bueno cohort 
was downloaded from the European Genome-phenome Archive 
under accession number EGAS00001001563 as RPKM-normalized  
count matrix including 216 bulk RNA-seq samples along with 
metadata information including histologic and molecular subtypes.  
Both datasets were log2 normalized before any downstream analysis. 
To compute the score for each scRNA-seq malignant cNMF program, 
we averaged the expression of the top 20 genes for each malignant 
cNMF module. For cNMF programs identified in other compartments, 
we first corrected the bulk normalized expression for a given cell-type 
abundance (e.g., T cells) by using the function removeBatchEffect  
from limma R package v3.54.0, in which we designated the expres-
sion of a canonical marker for a given cell type (e.g., CD3D for T cells) 
as a covariate. For immune content correction, we used the PTPRC 
marker gene, for T-cell infiltration, we used CD3D, and for endothelial 
content, we used VWF. This was done to ensure that differences ob-
served in the bulk were not caused by higher or lower abundance of 
the cell compartment assessed. Additionally, to validate T-cell cNMF 
module enrichment across molecular subtypes, we selected most spe-
cific markers for each module: CD8A and CD8B for Tm2, HAVCR2 for 
Tm5, and FOXP3, TNFRSF18, and ILRA for Tm7. Similarly, we select-
ed most specific marker genes for the fetal PLVAP+ EC subpopulation 
(ESM1, PLVAP, TP53I11, and INSR) to compute survival analysis.

Bulk RNA-seq Cell Type Deconvolution
Cell-type deconvolution of bulk RNA-seq samples was performed 

using the package BayesPrism v2.0. To identify significant differ-
ences in the deconvolved cell-type proportions, we calculated P values 
using the Dirichlet-multinomial regression analysis, implemented by 
the R package DirichletReg v.0.7.1. Given that cell compositions sum  
to one, there is an inversely proportional relationship between cell 
fractions. Dirichlet-multinomial regression models these dependen-
cies by accounting for the proportions of all other cell subsets when 
comparing the difference in one cell subset between two PM sample 
groups (e.g., difference in T cells between sarcomatoid and epitheli-
oid molecular subtypes). Dirichlet regression was used to assess the 
significant variation in cell-type abundances from deconvolved bulk 
RNA cohorts and scRNA-seq data.

Assigning Bulk RNA-seq–Based Molecular Subtypes to 
Malignant Single Cells

Two-dimensional representation of PM subtypes in malignant cells 
was carried out similarly to Neftel and colleagues (49). Cells were first 
separated into sarcomatoid/biphasic-S versus epithelioid/biphasic-E by 
the sign of D = log2 [max(sarcomatoid, biphasic-S) − max(epithelioid, 
biphasic-E) − 1], and D defined the y axis of all cells. For sarcomatoid/
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biphasic-S cells (i.e., D > 0), the x axis value was defined as biphasic-S—
sarcomatoid, and for epithelioid/biphasic-E cells (i.e., D < 0), the x 
axis was defined as epithelioid—biphasic-E.

Survival Analysis
We used a Kaplan–Meier (KM) model to estimate the survival func-

tion using the Bueno and Hmeljak cohorts, stratified by their expression 
levels of various gene modules that can serve as potential prognostic  
biomarkers. To adjust for histology or molecular subtype groups,  
we used a Cox proportional hazard regression model and computed 
P values. Both models were implemented using the survival v.3.4-0 R 
package. For Kaplan–Meier models, we grouped the samples into three 
groups based on their module score, with high assigned to the first 
quartile, medium (med) to the second and third quartile, and low to the 
fourth quartile. For Cox proportional hazard regression models we used 
both continuous and stratified expression values and relative P values 
were reported as P value (C) and P value (S), respectively. P values based 
on the log-rank test and the χ2 test were used to determine the statis-
tical significance of survival outcomes among the three groups in the  
Cox proportional hazard regression and KM models, respectively.

SCENIC Analysis
SCENIC v.1.1.2 was run using default settings on the myeloid, 

TAM, and ECs. With its implementation in R, SCENIC was run using 
the 500-bp and 10-kb motif databases for GENIE3 and RCisTarget. 
The regulon activity scores (AUC) were calculated using the AUCell 
v.4.2 R package for normal and fetal ECs using regulon information 
from the PM ECs.

NicheNet Analysis
We applied the NicheNet package v2.0.4 implemented in R to 

predict potential upstream ligands in the TMEs of specific gene sig-
natures. The receiver was defined as the cell population most highly 
expressing a given module, and the sender was the other cell types. 
Background expressed genes were defined as the intersection of the 
top 5,000 variable features in the receiver cells and the ligand can-
didates in the ligand–target matrix database provided by NicheNet.

TCR-seq Analysis
TCR analysis was performed using R package scRepertoire v2.0. 

Filtered contig lists from each sample outputted from CellRanger were 
combined using the function CombineTCR and mapped to expression 
data via barcodes using the combineExpression function. Clonotypes 
were labeled as non-expanded, expanded small (n > 1 and n ≤ 5, small), 
and expanded large (n > 5, large). To assess exhaustion in expanded clo-
notypes, we used the computed score for the exhaustion module Tm5 
and averaged the score per clonotype across cells. For clonal overlap 
across samples and across sites, we used the “CTstrict” clonecall.

Quantification and Statistical Analyses
All statistical analyses are described in the figure legends. When 

multiple tests were performed, P values were corrected using the 
Benjamini–Hochberg procedure and false discovery rate (FDR) ≤ 0.05. 
Significance annotation: *, P < 0.05; **, P < 0.01; ***, P < 0.001; and 
****, P < 0.0001. P values > 0.05 are not shown.

Immunohistochemistry
Paraffin-embedded human mesothelioma tumor samples from all 

three histologic subtypes—epithelioid, biphasic, and sarcomatoid—as 
well as uninvolved normal lung tissues from patients with lung ade-
nocarcinoma, were sourced from the Biorepository Tissue Bank at 
the Icahn School of Medicine at Mount Sinai (ISMMS). These tissue 
samples were procured in accordance with protocols approved by the 
Institutional Review Board (IRB) of ISMMS. For IHC, 3 μm sections 

of these paraffin-embedded tissue sections were utilized. The IHC pro-
cess was conducted at the Biorepository and Pathology Core at Mount 
Sinai using the VENTANA Discovery Ultra System (Roche) following 
the manufacturer’s protocols. This involved de-paraffinization of the 
tissue sections, followed by sequential staining with primary antibody 
for CD31 (Roche) and PLVAP (Proteintech). Each primary antibody  
application was succeeded by the application of corresponding sec-
ondary antibodies—DISCOVERY OmniMap anti-Mouse HRP (RUO; 
catalog # 760-4310) and DISCOVERY Anti-Mouse HQ (catalog # 
760-4814). The signals were then developed using different colors: the  
DISCOVERY ChromoMap DAB kit (RUO; catalog # 760-159) for 
brown and the DISCOVERY Purple kit (RUO; catalog # 760-229) for 
purple. After each staining phase, slides underwent a process of inhi-
bition, heat denaturation, and neutralization. Subsequently, tissues 
were counterstained with hematoxylin to highlight the nuclei in blue. 
The stained sections were imaged using NanoZoomer S60 Digital slide 
scanner (Hamamatsu), and the acquired images were analyzed using 
the HALO Image Analysis Platform (Indica Labs). CD31+ vessels, char-
acterized by brown-stained particles in the cytoplasm, were quantified. 
Simultaneously, PLVAP-positive cells, discerned by purple-stained 
particles, were identified. The percentage of CD31 and PLVAP double- 
positive ECs within blood vessels was then calculated for graphical rep-
resentation. For each sample, quantification was conducted on 9 to 23 
randomly selected regions of interest (ROI). Statistical significance of 
the findings was assessed using a paired Student t test.

Immunophenotyping of Mesothelioma Cell Lines and NK Cells
We performed immunophenotyping on all four mesothelioma cell 

lines used in this study: NCI-H28 (ATCC CRL-5820), MSTO-211H 
(ATCC CRL-2081), NCI-H2052 (ATCC CRL-5915), and NCI-H2452 
(ATCC CRL-5946). The cell lines were cultured in RPMI1640 medium 
(ATCC, #30–2001) supplemented with 10% FBS and penicillin/strep-
tomycin and incubated at 37°C with 5% CO2. These cell lines were 
sourced from ATCC, which conducts regular short-tandem repeat 
genotyping and Mycoplasma testing. Additionally, the cells were main-
tained in culture for a duration of less than 6 months from the time 
of resuscitation. Experimental procedures were conducted within 
eight passages from the initial frozen stocks. Each cell line was treated 
overnight in fully supplemented RPMI medium, either with or with-
out 200 ng/mL recombinant human interferon gamma (rhIFNγ). Fol-
lowing treatment, cells were stained with Zombie NIR (BioLegend) 
for viability assessment. Subsequently, Fc blocking was performed 
using TruStain FcX, and the cells were stained with HLA-E PE anti-
body (BioLegend) to assess the surface expression of these receptors. 
The comprehensive analysis of receptor expression was conducted 
using flow cytometry with a Cytek Aurora system. PBMC were iso-
lated from healthy donor’s blood using density gradient centrifuga-
tion with Lymphoprep (STEMCELL Technologies) as the separation 
medium. The freshly isolated PBMCs were subsequently cultured in 
human NK MACS medium (Miltenyi Biotec) for 2 to 3 weeks to en-
sure optimal in vitro expansion of NK cells. NK cells were analyzed by 
flow cytometry for expression of NKG2A using the abovementioned 
protocol but with anti-human NKG2A PECy5 antibody (BioLegend).

Mesothelioma-NK Cell Coculture Assay
Mesothelioma cell lines were prepared by incubation with or with-

out 200 ng/mL rhIFNγ in fully supplemented RPMI medium over-
night. For the coculture assay, mesothelioma cell lines were further 
pretreated with anti-MHC class I antibody (10 μg/mL; Clone W6/32, 
BioLegend) for 1 hour, whereas human blood-derived in vitro expanded  
NK cells were pretreated with anti-NKG2A (10 μg/mL; Beckman 
Coulter) antibody for 1 hour. Subsequently, NK and mesothelioma 
cells were combined in a 96-well plate at an effector to target (E:T) ratio  
of 6:1. Anti-CD107a-BV785 antibody (BioLegend) at 1:500 dilution 
was added to the cells. After 1 hour, the culture was supplemented with 
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0.5× concentrations of both brefeldin A and monensin (BioLegend) to 
facilitate cytokine retention within the cells. The cocultured cells were 
then incubated for a total of 16 hours. Post-incubation, the cells under-
went staining with Zombie NIR (BioLegend) for viability assessment, 
Fc blocked using TruStain FcX, and then stained with surface antibod-
ies, including CD45 BUV395, CD3 BUV496, CD4 BV570, CD8 PerCP 
Cy5.5, CD56 BUV805, PD1 BV711, and NKG2A PECy5 (BioLegend). 
The cells were fixed using IC fixation buffer (BioLegend) and intracel-
lularly stained using granzyme A AF700 and IFNγ PE antibodies in  
1× permeabilization buffer (BioLegend). Finally, the stained samples 
were subjected to flow cytometric analysis using a Cytek Aurora system 
to quantitatively assess NK cell degranulation and cytokine produc-
tion. FlowJo was used for flow cytometry data analysis. We employed 
the Flow AI algorithm via the FlowJo software platform. This approach 
facilitated the automated identification and exclusion of aberrant 
events, ensuring high-quality data for subsequent analysis. The pa-
rameters and thresholds for Flow AI were set in accordance with the 
software’s guidelines to optimize data integrity and analytic accuracy.

Graphical Illustrations
Graphical elements used to create experimental design schemes 

were created with a paid licensed version of BioRender.

Data Availability
Raw scRNA-seq, CITE-seq, and TCR-seq data along with pro-

cessed files have been deposited in the Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo/) and are available under accession 
number: GSE190597. The rest of the data was queried from publicly  
available repositories. The Hmeljak cohort (8) and the full bulk 
RNA-seq TCGA cancer cohort were obtained through cBioPortal 
(http://www.cbioportal.org). The Bueno cohort (9) was downloaded  
from the European Genome-phenome Archive under accession number 
EGAS00001001563. The human adult lung atlas scRNA data (22) was 
downloaded from https://www.synapse.org/#!Synapse:syn21041850/
wiki/600865. The human fetal lung atlas scRNA data (23) was down-
loaded from https://fetal-lung.cellgeni.sanger.ac.uk/scRNA.html. The 
immune pan-cancer scRNA study (38) was downloaded from https://
zenodo.org/records/5186413#%20.YRqbJC1h2v6. Code to reproduce 
computational analyses results can be accessed at https://github.com/
TsankovLab/PM_scRNA_atlas.
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